Perencanaan Safety Stock Menggunakan Metode Peramalan pada Proses Produksi Kemasan PT Empat Perdana Karton

Authors

  • Radif Ramadan
  • Risma Fitriani

DOI:

https://doi.org/10.33021/jie.v10i01.83

Keywords:

Inventory Management, Safety Stock, Forecasting, ARIMA, Operational Efficiency, Manufacturing Industry, Stock Management

Abstract

Inventory management is a crucial aspect of the manufacturing industry to ensure smooth production processes and operational efficiency. One of the key elements in inventory management is safety stock, which serves to anticipate demand uncertainties and supply chain disruptions. This study aims to analyze the demand pattern of packaging production at PT Empat Perdana Carton, apply the Autoregressive Integrated Moving Average (ARIMA) forecasting method, and determine the optimal amount of safety stock. Production demand data was collected from January 2020 to December 2023 and analyzed using Minitab software. The research findings indicate that the ARIMA (4,0,3) model is the best-performing model, with a Mean Square Error (MSE) of 7,557.63. Based on the forecasting results, safety stock calculations were conducted at various service levels (90%-99%). The results show that the optimal safety stock ranges from 189 to 344 units, depending on the selected service level. These findings contribute to the company’s efforts to optimize inventory planning, prevent stock shortages or excesses, and enhance operational efficiency.

References

Alfiansyah, A., & Hasin, A. (2023). Integrasi ABC System dan EOQ Dalam Pengendalian Persediaan Bahan Baku (Studi Kasus pada Perusahaan Tisu di Yogyakarta). Journal Of Social Science Research, 3(4), 10202–10213. https://j-innovative.org/index.php/Innovative

Alharbi, F. R., & Csala, D. (2022). A Seasonal Autoregressive Integrated Moving Average with Exogenous Factors (SARIMAX) Forecasting Model-Based Time Series Approach. Inventions, 7(4), 94. https://doi.org/10.3390/inventions7040094

Bakar, N. A., & Rosbi, S. (2017). Autoregressive Integrated Moving Average (ARIMA) Model for Forecasting Cryptocurrency Exchange Rate in High Volatility Environment: A New Insight of Bitcoin Transaction. International Journal of Advanced Engineering Research and Science, 4(11), 130–137. https://doi.org/10.22161/ijaers.4.11.20

Deiwantara, R., & Prastawa, I. H. (2025). Usulan Perbaikan Pengendalian Perencanaan Peramalan & Safety Stock Pada Persediaan Spare Part GEARBOX Dengan Menggunakan Metode Time Series pada PT Indo Tambangraya Megah. Industrial Engineering Online Journal, 14(1).

Erkekoglu, H., Garang, A. P. M., & Deng, A. S. (2020). Comparative Evaluation of Forecast Accuracies for Arima, Exponential Smoothing and Var. International Journal of Economics and Financial Issues, 10(6), 206–216. https://doi.org/10.32479/ijefi.9020

Irawan, I. (2019). Analisis Manajemen Persediaan, Ukuran Perusahaan, Dan Leverage Terhadap Manajemen Laba Pada Perusahaan Manufaktur Di Bei. Jurnal Manajemen Tools, 11(1), 99–115.

Kandananond, K. (2012). A Comparison of Various Forecasting Methods For Autocorrelated Time Series. International Journal of Engineering Business Management, 4(1), 1–6. https://doi.org/10.5772/51088

Khadarusman, R., Kusrini, & Kusnawi. (2024). Penerapan Metode Moving Average untuk Memprediksi Stok Parfum. Bit-Tech, 7(1), 104–112. https://doi.org/10.32877/bt.v7i1.1563

Larassati, P., & Lusiantoro, L. (2022). Evaluasi Kebijakan Safety Stock di Tengah Kenaikan Permintaan dan Terkendalinya Pasokan: Studi pad Produk Oral Care PT Unilever Indonesia [Universitas Gadjah Mada]. https://etd.repository.ugm.ac.id/penelitian/detail/214904?utm_source=chatgpt.com

Lutfiana, L., & Puspitosari, I. (2020). Analisis Manajemen Persediaan Pada Usaha Mikro, Kecil, Dan Menengah (UMKM) Jazid Bastomi Batik Di Purworejo. Jurnal JESKape, 4(1), 55–66.

Muma, B., & Karoki, A. (2022). Modeling GDP Using Autoregressive Integrated Moving Average (ARIMA) Model: A Systematic Review. OALib, 09(04), 1–8. https://doi.org/10.4236/oalib.1108355

Pakaja, F., Naba, A., & Purwanto, P. (2015). Peramalan Penjualan Mobil Menggunakan Jaringan Syaraf Tiruan dan Certainty Factor. Neural Networks, 6(1), 23–28.

PT Empat Perdana Carton. (2025). PT Empat Perdana Carton. https://www.semuabis.com/pt-empat-perdana-carton-0267-401732

Putri, N., Amrita, L., Zulfa, A., Mahendra, D., & Minardi, J. (2024). Efisiensi Pengelolaan Persediaan Stok Menggunakan Metode Safety Stock di Kaki Naga Jepara. Journal of Information System and Computer, 4(2), 83–86.

Rachman, R. (2018). Penerapan Metode Moving Average Dan Exponential Smoothing Pada Peramalan Produksi Industri Garment. Jurnal Informatika, 5(2), 211–220. https://doi.org/10.31311/ji.v5i2.3309

Radasanu, A. C. (2016). Inventory Management, Service Level and Safety Stock. Journal of Public Administration, Finance and Law, 9, 145–153.

Raodah, Yanasim, N., & Erniyani. (2024). Penentuan safety stock bahan baku gypsum pada proses pembuatan semen. JENIUS : Jurnal Terapan Teknik Industri, 5(1), 205–213. https://doi.org/10.37373/jenius.v5i1.1155

Rizkya, I., & Fernando. (2021). Optimalisasi Persediaan Bahan Baku Atap Spandex dengan Metode Q. Jurnal Sistem Teknik Industri, 23(1), 1–8. https://doi.org/10.32734/jsti.v23i1.4906

Salman, A. G., & Kanigoro, B. (2021). Visibility Forecasting Using Autoregressive Integrated Moving Average (ARIMA) Models. Procedia Computer Science, 179, 252–259. https://doi.org/10.1016/j.procs.2021.01.004

Sari, D. I. (2018). Analisis Perhitungan Persediaan dengan Metode FIFO dan Average Pada PT. Harapan. PERSPEKTIF : Jurnal Ekonomi Dan Manajemen Akademi Bina Sarana Informatika, 16(1), 31–38.

Schaffer, A. L., Dobbins, T. A., & Pearson, S.-A. (2021). Interrupted time series analysis using autoregressive integrated moving average (ARIMA) models: a guide for evaluating large-scale health interventions. BMC Medical Research Methodology, 21(1), 58. https://doi.org/10.1186/s12874-021-01235-8

Singh, R. K., Rani, M., Bhagavathula, A. S., Sah, R., Rodriguez-Morales, A. J., Kalita, H., Nanda, C., Sharma, S., Sharma, Y. D., Rabaan, A. A., Rahmani, J., & Kumar, P. (2020). Prediction of the COVID-19 Pandemic for the Top 15 Affected Countries: Advanced Autoregressive Integrated Moving Average (ARIMA) Model. JMIR Public Health and Surveillance, 6(2), e19115. https://doi.org/10.2196/19115

Sufandi, U. U., Pandiangan, P., Hidayat, A., & Trihapningsari, D. (2024). Menghitung Efisiensi Kebutuhan Bahan Ajar Cetak Universitas Terbuka Menggunakan Model Safety Stock dan Reorder Point. INSERT: Information System and Engineering Technology Journal, 5(2), 110–127.

Sylvia, S. (2020). Implementasi dan Analisa Metode Peramalan Exponential Smoothing dan Weighted Moving Average Untuk Permintaan Produk Minuman Kopi K di CV Fajar Timur Lestari. Journal of Industrial Engineering & Management Research, 3(4), 139–147.

Wardah, S., & Iskandar, I. (2017). Analisis Peramalan Penjualan Produk Keripik Pisang Kemasan Bungkus (Studi Kasus : Home Industry Arwana Food Tembilahan). J@ti Undip : Jurnal Teknik Industri, 11(3), 135–142. https://doi.org/10.14710/jati.11.3.135-142

Downloads

Published

23-04-2025